Startseite   Übersicht


Schwerpunkt beim Newton

Um was geht es

Zum Bau eines Dobson wird man sich um eine Rockerbox mit Höhenrädern kümmern müssen. Wie groß sollte die Box denn sein? Klar, so klein wie möglich, aber was ist so klein wie möglich und wie bestimme ich das.

Das Ganze kann man ausrechnen. Zuerst muss man sich über den Schwerpunkt des Teleskops im Klaren werden, um den dreht sich ja später alles. Um den Schwerpunkt zu bestimmen, muss man die einzelnen Gewichtsanteile und deren Lage am Teleskop kennen (oder schätzen). Diese Werte (Gewicht eines Teils und Lage eines Teils) werden dann zur Berechnung herangezogen.

Die Summe der Drehmomente muss null sein.

Dann rechnen wir mal

Na ja, dann rechnen wir mal den Schwerpunkt aus. Das Drehmoment ist einfach Masse mal Abstand (vgl. Hebel).

M = m * x

m: Die Masse (also das Gewicht)
x: Der Abstand des Teils
M: Das Drehmoment

Da alles Null sein muss und wir die Stelle des Schwerpunkt berücksichtigen wollen, können wir schreiben:

Σ mn * (xn - x0) = 0

mn: Die Masse des n-ten Teils
xn: Der Abstand des n-ten Teils vom Boden
x0: Der Schwerpunkt (im Abstand vom Boden)

Umgestellt ergibt sich also

x0 = Σ mn * xn / Σ mn

Zweckmäßigerweise wählt man den Boden als Unterseite der Spiegelkiste. Die Rockerbox bezieht man natürlich nicht mit in die Betrachtung mit ein, die wird ja nicht um den Schwerpunkt gedreht.

Das kann man dann ganz einfach im Excel machen. Eine Spalte mit den Massen eines Teils, eine Spalte mit den Abständen der Teile vom Boden (die Werte benötigst du ja sowieso). Dann eine 'Hilfs'Spalte dahinter als Produkt aus Masse und Abstand. Jetzt kann man einfach eine Formel SUMME(Hilfsspalte) / SUMME(Gewichte) in eine Zelle eingeben und hat den Schwerpunkt.

Mit dem Schwerpunkt alleine wird die Rockerbox ja nicht dimenstioniert werden können. Die Lage des Schwerpunkts bezieht sich ja auf den Mittelpunkt der Spiegelbox. Der Weg bis zum Rand der Spiegelbox muss ja beim Drehen um den Schwerunkt berücksichtigt werden, damit die Kiste nicht anstößt. Da kann man einfache Dreiecksrechnung ansetzen mit a2 = b2 + c2, um die freie Höhe vom Schwerpunkt aus nach unten gesehen zu bestimmen (b sei sie Schwerpunktlage und c die halbe breite der Spiegelbox). Dieses Maß kann man allerdings verkürzen, wenn man die vordere Seite der Spiegelbox anschrägt.

Ich denke, zum Verständnis reicht das mal aus. Falls ich nochmal lust hab, weiter drauf einzugehen, gibt's einen Update von diesem Artikel'chen...

...und da ist er

Eine kleine Beispielrechnung

Damit der Umgang mit den Formeln etwas klarer wird, hab ich hier mal ein kleines Beispiel aufgeführt. Es soll der Schwerpunkt berechnet werden für einen 14" f/6 Dobson. Zuerst nimmt man seine Konstruktionszeichnung, um an die Abstände zu kommen. Das Gewicht der einzelnen Teile kann man dann entweder messen/wiegen oder auch berechnen (Birke-Multiplex hat 0,68 g/ccm).

Zuerst wird in der Konstruktionszeichnung eine (gedachte) Null-Linie eingeführt. Am besten erfolgt dies auf der Grundplatte der Spiegelbox. Ausgehend von da sind die Abstände anzugeben. Es ist darauf zu achten, das die Abstände jeweils der Mittelwert des Abstands ist, wenn das Element dicker/länger/höher ist. So ist etwa der Mittelpunkt der Spiegelbox bei der halben Höhe anzugeben und nicht bei Höhe 'null'.

Das Gewicht kann für viele Elemente gemessen/gewogen werden. Dann hat man den genauen Wert. Als Abschätzung vorab (also vor dem Bau) kann man das Gewicht auch grob berechnen. Das spezifische Gewicht von z.B. Birke-Multiplex ist 0,68 g/ccm. Berechnet man also das Volumen V des Holzelements mit Länge x Breite x Dicke (jeweils in cm) und multipliziert dies mit dem spezifischen Gewicht, so hat man das Gewicht des Elements. Man muss evtl. das Gesamtgewicht eines Elements (z.B. der Spiegelbox) aus den einzelnen Teil-Elementen zusammenrechnen.

Hat man diese Werte nun parat, so kann man sich eine entsprechende Tabelle aufstellen (so richtig aus Papier und Bleistift). In diese Tabelle trägt man z.B. in die erste Spalte den Namen (rot), in die zweite Spalte das Gewicht (grün) und in die dritte Spalte den Abstand (blau).

In einer vierten Spalte (violett) multipliziert man dann das Gewicht mit dem Abstand und trägt diese Zahl dort ein. Anschließend bildet man die Summe über die Spalte mit dem Gewicht (grün) und über die soeben berechnete Spalte (violett).

Element Gewicht [kg] Abstand [mm] Zwischenwert
Spiegelbox 9,9 150 1485
Hut 1,9 1600 3040
Spiegel 12,0 180 2160
Höhenräder 2,4 270 648
Stangen 2,0 1000 2000
       
  28,8   9333

Zum einen hat man nun das (grobe) Gewicht des Teleskops (natürlich ohne Rockerbox). Weiterhin kann man nun aus diesen beiden Zahlen den Schwerpunkt berechnen, indem man die Summe der Zusatzspalte (orange) durch die Summe des Gewichts (blau-grün) dividiert.

Damit hat man dann also 9333 geteilt durch 28,8 und erhält für den Schwerpunkt 330,96 mm.

Ein kleines Berechnungstool

Hier ein kleines Beispiel zur Schwerpunktberechnung. Man tippt seine Werte (Gewicht und Abstand vom Boden) in die roten Felder ein und drückt den Button [Berechne]. Dann sollte die Höhe des Schwerpunkts - vom Boden aus gesehen - angegeben werden. Die Zusatzfelder werden automatisch (zur Kontrolle) ausgefüllt. Zu beachten ist, das bei der Eingabe mit Punkt und Komma als Trennzeichen das richtige Zeichen benutzt wird (auch an den Kontrollfeldern leicht zu überprüfen).

ElementGewicht [kg]Abstand [mm]Zusatz
Spiegelbox
Hut
Spiegel
Höhenräder
Stangen
Ausgleich
Zusatz (1)
Zusatz (2)
Zusatz (3)
       
   

Der Schwerpunkt liegt bei 368mm


Stand: 1. Juni 2011